
I

Obtaining the Greatest Scientific Benefit from Observational Platforms by
Consideration of the Relative Benefit of Observations

David Chelberg, Frank Drews, David Fleeman, and Lonnie Welch
Center for Intelligent, Distributed and Dependable Systems

School of Electrical Engineering and Computer Science
Ohio University, Athens, Ohio - 45701
(chelbergl drews I welch @Ohio. edu)

Jane Marquart, Barbara Pfarr
Real-Time Software Engineering Branch

NASA Goddard Space Flight Center
Baltimore, Maryland -20771

Qanemarquart I barbara.pfarr@gsfc. nasa.gov)

Abstract

One of the current trends in spacecraft software design
is to increase the autonomy of onboardflight and science
software. This is especially true when real-time
observations may afect the observation schedule of a
mission. For many science missions, such as those
conducted by the Swift Burst Alert Telescope, the abiliw
of the spacecraft to autonomously respond in real-time to
unpredicted science events is crucial for mission success.
We apply utility theory within resource management
middleware to optimize the real-time performance of
application software and achieve maximum system level
beneft. We then explore how this methodology can be
extended to manage both software and observational
resources onboard a spacecraft to achieve the best
possible observations.'

1. Introduction

One of the current trends in spacecraft s o h a r e design
is to increase autonomy and automation in onboard flight
and science Software. This is especially true when real-
time observations may affect the observation schedule of a
mission. One example of this is the Swift Burst Alert
Telescope instrument [151. Swift will respond to onboard
detection of gamma ray bursts in real-time. Its actions
will include: notifying the ground of the event via
TDRSS; interrupting the planned science schedule and
commanding the spacecraft to reorient its attitude toward
the burst; reconfiguring the onboard processor for Gamma

' This work was funded in part by the NASA Earth Science Technology
Ofice Advanced Information Systems Technology Program; by the
NASA Computing, Information and Communications Technology
Program; and by the DARF'A Program Composition for Embedded
Systems Initiative.

Ray Burst (GRB) data processing; and intercepting the
onboard science plan following completion of the burst.
The decision of when and whether to interrupt the on-
going survey task and respond to a particular GRB event
is a function of the relative merit of each proposed
observation. When the scientific benefit of responding to
a perceived GRB event is greater than the scientific
benefit of continuing the survey, the spacecraft
autonomously decides to reorient and respond to the GRB
event. The ability of the spacecraft to autonomously
respond in real-time to unpredicted science events is
crucial for this mission's success.

This example demonstrates the use of increasingly
powerful computers to perform science processing and
analysis in real-time on-orbit. As this trend continues,
spacecraft will need to make increasingly complex
autonomous decisions about which action among several
will return the most valuable scientific data. This task is
even more complex when spacecraft are involved in
coordinated scientific observation involving constellations
of spacecraft and multiple instrument platforms as NASA
envisions for future missions.

Utility theory, the theory that provides mathematical
tools to compute the relative value of different courses of
action, was originally developed by economists to model
the decisions made by consumers [8]. It has been
addressed by many researchers and used in diverse fields
to determine optimal decisions, i.e., to decide which
action among several is the best one [9], [lo] (compare
[1 13 for an overview). It has been recently incorporated in
adaptive resource management middleware (ARM) that
optimizes the real-time performance of sets of application
software. The middleware plans actions that include which
software to run on which resources to achieve the
maximum system level benefit. Our previous research in
the field of ARM includes static models for resource
allocation of real-time systems [1, 21 and dynamic models
in [3, 41. Applications of our dynamic models [5, 6 , 71

showed their effectiveness for adaptive resource
management. However, our previous approaches lacked
the information needed to gracefully degrade performance
in overload situations, did not support feasibility analysis
or allocation optimization, did not consider security
aspects, and did not include network hardware. To
overcome these drawbacks, we proposed a general
optimization framework for distributed, dynamic real-time
systems [12]. Interesting aspects of this model include
dynamic environments, and utility and service levels,
which provide a means for graceful degradation in
resource constrained situations.

In 1131 we proposed a hierarchical ARM architecture
based on our general framework and a heuristic
algorithmic approach based on a table lookup technique to
solve the corresponding resource allocation problem.
This paper explores how this methodology can be
extended to manage observational resources in addition to
the software resources onboard a spacecraft to achieve the
best possible observations.

Chapter 2 presents an overview on the RM system
fiamework presented in [12] and [13]. Chapter 3
proposes an architecture for an adaptive resource
manager. Chapter 4 describes how our model can be used
to incorporate the relative benefit of observational
resources. Chapter 5 provides an example describing how
our framework would act onboard a satellite.

2. RM System Framework (Overview)

In this section we summarize the general resource
management model presented in [I21 and [13]. The
model assumes that available CPUs can be treated as a
(possibly heterogenous) set of computational resources
that software tasks are run on. It is possible to run a task
on a choice of CPUs, thereby requiring the RM system to
allocate tasks to CPUs. This also allows the system to
have greater fault tolerance. If a particular CPU is down,
the tasks may be reassigned to other processors. This
fiamework is applicable in various contexts such as the
total shipboard computing environment for warships,
cooperating robots, onboard satellite systems, and for
many ground-based real-time systems. It is our goal to
remain context-fiee in describing the model, while
showing the applicability to the satellite domain in
subsequent sections.

A dynamic real-time system is composed of a variety
of software components, as well as a variety of physical
(hardware) components that govern the real-time
performance.

The physical components of a real-time system can be
described by a set of computational resources and an
interconnection network, and other devices. The
computational resources are a set of host computers H =

(h ,, . . . , h,}. It is generally assumed that the properties of
the computational resources and the network resources are
known.

Regarding the software components, we distinguish
two different software systems (see [12]):

The application software system. Its general purpose
is to control the environment. It may also include the
control of hardware components of the real-time
system. There is a logical view that distinguishes
several levels of abstraction. The highest level
represents the whole application software system.
This is often referred to as “system”, which, on the
next lower level, is considered as a collection of
subsystems SS,, , . . , SS,
The surveillance and management system (or
Resource Manager, RM) is responsible for the
correct cooperation between the components of the
application software, to ensure real-time conditions
such as timeliness, dependability, security, etc.

A subsystem represents some part that can be logically
separated fiom the total system. It is responsible for
managing a part of the real-time system, such as a
hardware component. A subsystem is a collection of
paths, each with a given period or a given maximum
frequency. Each path consists of a set of tasks and
possible precedences between them. Tasks inherit the
period or maximum fiequency from their paths.

Scheduling theory does not only deal with task-to-
processor allocation, but also with schedules. Besides task
allocation, a schedule defines the start times of tasks. For
a periodic task we may simplify the schedule specification
by a greedy rule, saying that each time a host becomes
free it chooses a task of highest priority among all tasks
that are waiting to be serviced by the host processor.
Priority may be defined externally. Other common ways
are by deadline (earliest deadline first strategy, EDF), or
by the rate monotonic rule. The event-driven tasks with
given rate r can be treated as periodic tasks with period
r-’. By specifying the scheduling rule for the execution
order, the schedule is uniquely determined from the task
allocation. As we will see, only the feasibility of an
allocation has to be checked.

During their execution the tasks will require certain
system resources. In particular it is assumed that tasks
have known execution and memory profiles that depend
on various circumstances,

on the processor it is assigned to,
on certain parameters that cannot be changed
(“extrinsic parameters”); these define operational
conditions and are set by the environment or by
the system components.
on service parameters; they can be changed at
runtime, e.g., in order to optimize system benefit.

See [12] for a detailed description.

The execution of tasks, and consequently the system
behavior is highly determined by the values of a number defined by b;. : [min-si, mmr-si] -+ (0, ..., ma\-?,]. This

of attributes. There are two types: extrinsic attributes E =
(el, ..., ek), and service attributes S = (sl, ..., sl). Extrinsic
attributes express functional conditions or requirements.
Extrinsic attributes are either posed by the environment,
or by the status of the system components. They are set by

granularimtion leads to discrete service attributes %, with

range {’, *..’ ma\-si}*
For both, extrinsic attributes and service attributes, we

use tilde (-1 to denote discretization; e&, the vector of

w

external conditions and cannot be changed by the system.
It is generally assumed that the values of an extrinsic
attribute ranges within a known interval [min, rnax], where
higher values represent more stringent conditions.

An example of an extrinsic attribute dictated by the
environment “externally” is the period at which a
controlling action has to be performed. An example of an
“internal” extrinsic attribute, defined by the system, is the
availability of processors, buffers, or internal network
bandwidth.

Each subsystem SS, has to react properly upon changes
of extrinsic attributes. We denote by Ei the subset of
extrinsic attributes that must be handled by SS, .

In contrast to the extrinsic attributes, the service
attributes S = (sl, ..., s,) are entities that can be changed at
any time by the controlling system. If the external
conditions (represented by the extrinsic attributes) change,
appropriate settings of the service attributes allow
adaptation to the new conditions.

Given an extrinsic attribute with range [min, max], we
expect consequences for the system behavior only if the
attribute changes by at least some minimum amount.
Therefore we discretize attribute values by defining a
mapping of the interval [min, max] to a finite set of
discrete values. There is no loss of generality if we choose
a set of integers 0, I , ..., mm-e, where m a - e is defined
by an acceptable granularity. The mapping y : [rnin, m a]
+ (0, I, ..., max-e} is defined by da) = L(o -

Henceforth we assume that, along with k extrinsic
attributes el, ..., ek , there are given maximum integers

max-el , ..., max-ek . There are mappings of extrinsic
attribute values to grid points,

f i [min-e,, mm-ei] -+ (0, ..., ma-<.> (i = I, ..., k).

These values define a grid of dimension k, with

G = { (G , ..., $ 1 < E (0, ..., max-ei, i = I, ..., k}.
Similarly to the external attributes, we also discretize

service attributes. If the range of service attribute si is
[min-st ma\-si] (discrete or continuous), then a mapping

of service attribute si to a discrete service attribute F j is

- -

+ I points in direction i ,
5

5

discrete service attributes is denoted by
In both, the pre-runtime analysis and the runtime

system, we consider only discretized values of extrinsic
and service attributes. For simplicity, the terms “extrinsic
attribute” and “service attribute” are used in the discrete
sense.

Finding optimal allocations is generally a hard
problem, consuming time that is at least exponentially
increasing with the number of tasks. Checking the
feasibility of a chosen allocation, however, can be done
very fast and in time that increases linearly with the
number of tasks. There are many ways to obtain sub-
optimal allocations, for example by applying heuristic
scheduling strategies. In these, a number of allocations is
chosen in a way specified by the heuristics, and checked
for feasibility and optimality.

In [I31 we followed an approach in which a set of
allocations {allocl, . . . , allocK} is chosen heuristically,
and each is analyzed with regard to its feasibility under
different settings of extrinsic and service attributes. Since
we perform our analysis on discrete attribute values, for
each allocation alloci it is checked on which grid points it
is feasible. Maximum points are referred to as Pareto
points. For an allocation allocj 0 E {I. ..., K)), and a

vector s“ of discretized service attribute values, Puretos;

(alloci> denotes the set of grid points E = (zI, . . ., ek) that
have the properties

aZZo9 is feasible if the service attribute values are

= G I , . . . , s ~) .

Y

(i) -
set to s = GI, ..., S,) -

(ii) there is no point E’ = GIf , ..., ek’) E Paretog

(alloci>, E # E ’ , that dominates (i.e., z,’ 2 zi for i = I ,
..., k).

The set of Pareto points stands for a set of allocations
along with settings of service level attributes that allow a
maximum increase in extrinsic attributes. Hence, this set
represents an investigation of the operational limits of the
real-time system.

In [13] an algorithm is presented that determines
Pareto points during a pre-runtime analysis.

For local optimization in the subsystem SS,, a function

Ui(,$, Ei) called “local utility function” is provided. The

objective is to set the service attributes such that the
system operates optimally, i.e. a maximum profit is
gained. To measure the profit, an overall utility function
Us,,,,, is defined whose value depends on both the
service and the extrinsic attributes. This allows one to
evaluate each point of the Pareto - s?, (alloci):

Usyslem : ((&, ..., sI), G) += ZR (real numbers)
Function Usyslern gives a numerical benefit that is

attained if the extrinsic attribute values are G, and the

system service attributes si are set to $ (i = 1, ..., 0. A
practical way is to compute Usys,em &om the subsystem
utilities by means of some aggregation function: Usysrem
:= aggregation(Ul, ..., Um). For example, for numerical
weights wI, . . ., w, we may define

(S l , ...,
%

rn

Usyspm := Z w i U;
I

The objective of the pre-runtime analysis is to
investigate operational limits of the control system. Given
sets of extrinsic and service attributes, we want to find a
feasible allocation that maximizes the values of extrinsic
attributes, while the values of the service attributes are
such that an overall utility is maximized. Indeed we are
facing a high-dimensional multicriterion optimization
problem, which, due to its computational complexity, can
only be solved heuristically (cf. [131).

For each of K > 0 chosen allocations (allocl, ...,
alZocK}, Pareto-points are determined. Each set of Pareto
points Paretog(a1ZocJ can be represented by a service
table

ST(a2loc;) = ((5, E) 1 E E Paretog(aZloci) , and
u

E (O..mar-s,, ..., O..ma-$ } } .
At runtime, the allocation manager chooses an

allocation by selecting a service table that best fits current
requirements of extrinsic attribute values (compare [131
for more details).

3. ARM Architecture

The ARM is responsible for the correct operation of the
whole system. As input, it is given the static
characteristics of both the hardware system and the
software system. Based on these, it makes resource
allocation decisions and has the ability to modify certain
performance parameters such as service attributes. The
resource manager consists of an allocation manager (AM)
which chooses a new allocation of application software to
hosts due to major changes of extrinsic requirements, a
global meta agent (GMA) which checks if reallocation of

application software to hosts is necessary, and tries to
optimize total benefit, meta agents (MA, , i = I, ..., m)
each being responsible for controlling an application
subsystem (SSi).

One reason for including GMA is overall utility: each
Mi tries to optimize its own behavior. In contrast, GU4
has a global system view that allows for an optimization
on a higher level through negotiation. Another reason is
efficiency: a reallocation of software modules among
hosts involves major changes that take considerable time
and affects the real-time requirements of the environment.
Hence, the attempt is to delay reallocations as long as
possible, and instead to make orders of magnitude faster
adjustments of system parameters (the service attribute
settings) on the GMA level.

3.1. Allocation Manager

One of the main objectives is to find an optimal
allocation of the applications to host computers. Such an
allocation, formally described by a function host: A + H,
has to fulfill runtime conditions and memory limitations
on the hosts. Both execution time and memory usage of a
task depend not only on extrinsic and service attribute
parameters, but also on the machine on which the task is
being executed.

If the actual instantaneous extrinsic attribute values
change and exceed the operational limits of the current
allocation, the GUA triggers the AM to choose and install
a new allocation. The AM will then decide upon a new
allocation that is able to handle the requirements of the
new extrinsic values. The decision is based on the global
service tables ST(alZocl), . , ., Sr(aZZocK) provided by the
pre-runtime analysis, and on the utility that potentially can
be gained from the new allocation.

A concept that offers the ability of adaptation to trends
in the development of extrinsic attribute values, is the use
of statistical data about extrinsic attributes. Assume, for
example, that for each extrinsic attribute ej , both, a mean

value 5 = yj(<) and standard deviation q := 46) are

available. E and oMW can be computed from the last
N changes of extrinsic values. N can be interpreted as the
length of a sliding window that specifies how far historic
values are considered. For example, for N = 1 we get

0. In this case, the model
becomes deterministic because the algorithm must choose
an allocation that is able to dominate the new requirement
E new. If N > 1, the algorithm will accept an allocation that
potentially violates domination with some probability, Le.,
also non-dominating allocations are accepted.

The advantage of this approach is two-fold:

-new

EmW = Enew and new =

Requirement peaks can be ironed away.
The size of history determines how fast the
control mechanism is able to adjust to new
requirements.

In [I31 the algorithm to realise this strategy is
explained in more detail.

A component-wise defmed function AEneW, one") is
used to set minimum requirements for the manageable

extrinsic values. An example function isAE , CJ) :=
-new new

EneW - oMW. Considering f = U;, .. ., f,) as a point in the
k-dimensional space of extrinsic values, we measure the
distances between Pareto points (P) and f by applying a
metric that gives extrinsic attributes with a smaller
standard deviation a higher influence on the distance,

weighted-distance (P,j) := 4- . (1)
The adaptable strategy chooses a Pareto point P that

dominates f and has smallest weighted distance to$
With knowledge off ; the first step of the AM is to

remove all entries fiom each S~al loc ,) that do not
dominatef: The result is a set of K reduced service tables.
In the next step, the AM computes the utility for each
entry of each reduced table. Among these reduced tables
the one with the highest utility entry is kept and sent to the
GMA, and its associated allocation is realized (arbitration

is applied in case of ambiguities). The component Em =
(em,, . . ., emk) of this table is called manageable extrinsic
attribute vector, because it defines the maximum possible
extrinsic values for each service setting that can be
handled by the new allocation.

In the computation of U, , the requirement vector Ei is

N

H

used instead of Emi for the following reason: though the
chosen allocation offers more capabilities (expressed by

the dominating Em,. vector), the system will not realize

higher requirements than necessary (expressed by Ei).

N

Y

3.2. Global Meta Agent

The purpose of the GUA is to provide an interface
between the allocation manager and the Meta Agent MA,
of each subsystem.

The GUA essentially consists of two algorithms that
are described in [1 31.

Note that in this solution, only one tuple is returned to

each MA, receives exactly one vector (Si , EL,). To
w

assign M i higher functionality (and hence more
responsibility), GMA can return a set of possible tuples,
and give the M i ' s freedom to choose a setting according
to their needs.

The algorithm Reallocation-Request checks if a call to
the allocation manager is required, or if an adjustment
without allocation change is possible (cf. [131).

Feasibility of an allocation is guaranteed as long as
there is a table entry in ST(al1oc) whose manageable
extrinsic attributes dominate the given extrinsic attributes
G. In case of a request fiom Mi, the G M (i.e. the
reallocation-request) quickly has to decide if a new
allocation is requred. Alternatively, the
reallocation-request may take into account, how many
dominating tuples remain in ST(ulloc), and triggers the
allocation manager if this number becomes too small.
Another criterion can be utility-oriented if the total utility
drops more than some minimum amount, then a new
allocation is requested.

3.3. Meta Agents

The concept of a separate Meta Agent MA, for each
subsystem SS, makes it possible to physically distribute
the meta agent software components. The realisation of a
local optimizer algorithm is explained in [131.

Among those service table entries (identified by the

partial service attribute values of sl for which the
allocation is feasible), choose one with maximum local
utility Vi . This way service attribute settings are chosen
such that utilities are maximized in each subsystem.

If the extrinsic attributes change during runtime, the
local optimizer in the subsystem Meta Agent M i adjusts
to these changes by first checking (local) feasibility of the
entries of the partial service table. As a consequence MA,
might find a new set of service attribute settings, subject
to optimizing the subsystem utility. In this case it sends
suggested partial service attribute values as a request to
the Global Administrator.

3.4. Cooperation between the components of the
RM

The situation defmed by current extrinsic attribute
values and service attribute settings changes if the
extrinsic values change. In this case, the Mi's check if
the altered settings of service attributes would allow
improved local utilities.

If a meta agent MA, realizes that its local utility can be
raised by some minimum amount, it issues a request to the
GMA to change service attribute settings. The G M

responds to this request by checking the service table

Sr(uZZoc). If it finds an entry (5, Em, U) that improves
overall utility, while the extrinsic attributes are dominated

by Em , the GUA would return $ and the new manageable

bounds Em to all Mi's . If there is no such entry in the
service table, then the changes in extrinsic attribute values
cannot be handled by the current allocation ulloc, and the
allocation manager is triggered to choose a new allocation
that is better adjusted to the current situation.

A direct response to the MA,'s is expected to need
orders of magnitude less time than asking the allocation
manager for a new allocation. Therefore the GUA is
designed such that it tries to keep the current allocation as
long as possible.

The data structure based on which the GUA makes its
changes is the service table ST(u1Zoc). As a consequence,
changes in the extrinsic attribute values excludes those

table entries from consideration, whose Em-components

do not dominate the new extrinsic settingAG , G).
Criteria for calling the allocation manager AM are: The
ST(yaZZoc) is exhausted, i.e. it has no entries dominating

A cnew, gneW). A weaker condition is utility-oriented If
utility drops considerably (by some specified maximum
amount), or it drops below some given limit, then, though
there might still be dominating entries in Sr(ulloc), the
AM is called.

N

N

N

N

-new new

4. Modelling Observational Resources

Observational spacecraft software is often driven by a
schedule determined a priori. Such a schedule may
indicate to a sensor when to start an observation, the
duration of an observation, the rate of receiving data, and
the importance to the scientist. We claim that the
information stored in such observation schedules can be
modeled in our framework as extrinsic attributes and used
by ARM control s o h a r e to plan for better utilization of
the spacecraft resources. In addition, ARM can
effectively react to dynamic changes in observation
schedules due to unpredicted science events such as
Gamma Ray Bursts (GRB) in the Swift Burst Alert
Telescope [15] system. In [13], an Image Processing
System (IPS) is introduced as possible observation-based
spacecraft software. An observational schedule for such a
system may appear as in figure { 1 1. In this example, the
rate that the camera will take pictures during a time h e
can be determined by the extrinsic attribute period. The
ARM control software must provide a resource allocation
that allows the IPS to meet all real-time constraints for the

current observation while maintaining optimality of
system utility. In addition, ARM must react to schedule
changes such as the sudden increase in importance due to
the onboard detection of hurricane formation on the
Atlantic Coast.

...
<observation name="atlanticcoast">

<time name="staK~20030317 03:00:00</time>
<time name="end">20030317 03:30:00</time>
<extrinsic name="period" unit="sec">30</extrinsic>
<extrinsic name="importance">5</extrinsiu
<extrinsic name="cloudcovef >70</extrinsic>

c/o bservatiom

<observation name="washingtondc"=-
...

<time narne="start">20030317 04:30:00</time>
<time name="end">20030317 05:00:00</time>
<extrinsic name="period" unit="secn>30~/extrinsic>
cextrinsic name="importance">l O</extrinsic>
cextrinsic name="cloudcovef >454extrinsic>

</observation>
...

Figure I: Example Observation Schedule
Another important reason for having a hmework to

model observation schedules for spacecrafts is due to the
presence of persistent (nonrenewable) resources and
constrained downlink availability and capacity. With such
a m e w o r k , ARM s o h a r e can also plan and control the
usage of persistent resources such as onboard storage
buffers to prevent less important data from excluding
more important data in the presence of resource
overloads. In some sense, the utility of a spacecraft
mission is directly proportional to the quality of data that
is returned to the ground. The observation schedule can
be used by ARM to determine the expected storage
requirements for a subsystem. These expected
requirements can be used as a basis for decisions
concerning the use of the persistent resources to optimize
the utility of the data that eventually reaches the scientist.
Much work remains to be done in developing ARM
policies for persistent resources.

5. Satellite Example

The Swift [I51 system for identifjkg and processing
Gamma Ray Bursts (GRB) is a current NASA mission
that requires autonomous decisions to be made onboard
satellites. In Swift, a sensor scans space looking for a
GRB. Once a GRB is detected, the satellite determines
the originating direction of the GRB, slews the sensor
towards the GRB source, and observes the afterglow
produced by the GRB. The current Swift implementation
does not use resource management middleware to
accomplish these dynamic tasks. However, in this section,

we describe how such a satellite system could operate
under the control of the proposed resource management
firamework.

The Swift mission can be decomposed into the
following tasks: scanning by the Burst Alert Telescope
(BAT), detection by the BAT, slewing by the satellite
positioning system, observation by the X-Ray Telescope
(XRT), and observation by the Ultra-VioletDptical
Telescope (UVOT). Other potential tasks that may need
to be performed simultaneously include the collection of
health and safety data and power management.

The Swift system currently operates without resource
management (RM) middleware as follows. All three
instruments (BAT, XRT, and UVOT) continuously
produce images in the direction they are pointing based on
some positioning schedule for surveying/scanning that is
created a priori. In the presence of a new GRB source,
Swift autonomously updates its observation schedule so
the system can capture images of the new GRB. Since
GRB images are the most informative during the first few
minutes, Swift attempts to capture new GRB sources as
soon as possible. Once a set amount of images of a GRB
source have been collected, Swift will again follow the
positioning schedule for surveying/scanning.

The same functionality described in Swift can also be
conducted within the presence of resource management
(RM) middleware. If RM were to be used for controlling
the Swift system, then the various RM components would
also be running on the satellite. Resource monitors would
gather the current state of all onboard resources.
Resource control mechanisms would be in place to allow
the relocation of applications to different processors and
various other control techniques. In addition, the
components that realize the decision-making within our
proposed framework would also be running on the
satellite: the Allocation Manager, the Global Meta Agent,
and a Meta Agent for each subsystem.

In an RM-compliant implementation of Swift, the
positioning schedule could be modeled as a set of service
attributes to be given to the satellite positioning agent,
where possible attributes include the location, duration,
and relative scientific importance. In the absence of a
new GRB, the Meta Agent would determine the service
attributes for positioning based on the predefined
positioning schedule, and send the current desired position
to the positioning agent. When new GRB sources have
been detected, the Meta Agent would be responsible for
deciding when images of the new sources should be
collected. If there is only one new GRB source, the Meta-
Agent would immediately reposition to gather images of
the GRB source since GRB images are most informative
immediately following detection. If more than one new
GRB source occurs within a few minutes of each other,
the Meta Agent must consider the tradeoffs between
repositioning the satellite for the second GRB source.

This decision would be influenced by utility models that
take into account the preferences of scientists for such a
situation. These models may also take into account
specific extrinsic attributes concerning a GRB image such
as gamma-ray count rate and redshift.
RM could also allow Swift processes to vary the

resource consumption of each instrument and application.
The rates at which the BAT, XRT, and W O T perform
their operations could be modeled as service attributes
that RM could control resulting in different operating
levels for each instrument. If storage space for images on
the satellite is constrained, then the rate at which the Swift
instruments create images could be changed possibly
resulting m fewer images. This action would be triggered
only in the case that on-board storage was insufficient to
keep all data.

In the absence of a new GRB, it may be desirable for
the XRT and W O T tasks to use a nominal amount of
resources since they are not gathering information about a
GRB. The absence of a GRB could be modeled as an
extrinsic attribute that can assume two values indicating
whether a GRB is present or not. The BAT would
continue to scan and report to a Meta Agent that a GRB
has not been detected, while the XRT and W O T continue
to perform a nominal sky survey. This allows other
onboard applications to increase their resource
consumption to perform various tasks such as further
process the images collected thus far. Once a GRB has
been detected, the BAT would reset the extrinsic attribute
to indicate that a GRB has been detected and report it to
the Meta Agent. The Meta Agent would noti6 the Global
Meta Agent that a GRB is present and that it would like to
have more resources for the XRT and UVOT tasks. The
Global Meta Agent may ask the Allocation Manager for a
new allocation or it may readjust the allowable service
attributes for each subsystem. Other tasks on the satellite
could either be shutdown or could perform at reduced
service levels while the XRT and UVOT are gathering
and processing information about the current GRB.

The discussion thus far concentrates on a single
satellite system. The Swift project will demonstrate that
individual autonomous satellite systems can be
successhlly deployed without resource management
middleware. However, as NASA seeks to transition to
constellations of cooperative satellites requiring
autonomy, the need arises for a consistent flamework for
resource management. We have discussed how our
resource management framework could be applied to the
Swift system with the realization that the same RM
framework could be used to control the processing within
a constellation of satellites.

6. Conclusion

In this paper, we have described in greater detail our
previous model [121 for characterizing distributed real-
time systems operating in dynamic environments. We

resource management framework for increasing autonomy
in spacecraft flight and science software. The main
contribution of this paper is to describe how to apply our
model to manage both software and observational [14]
resources onboard a spacecraft to optimize the relative
benefit of observations.

7. References

have also explored the applicability of such an adaptive 1131

~ 5 1

Vert~oosel, J., et al., “‘A Model for Scheduling of Object-
Based, Distributed Real-Time Systems,” Journal of
Real-Time Systems, 8(l), pp. 5-34, Kluwer Academic
Publishers, January 1995.
Welch, L., Stoyenko, A, and Marlowe, T., “Modeling
Resource Contention Among Distributed Periodic
Processes Specified in CaRT-Spec,” Control
Engineering Practice, 3(5), pp. 651-664, May 1995.
Welch, L., et al, “Adaptive QoS and Resource
Management Using A Posteriori Workload
Characterizations,“ The IEEE Real-Time Technology
and Applications Symposium, pp. 266-275, June 1999.
Welch, L., et al, ”Specification and Modeling Of
Dynamic, Distributed Real-Time Systems,” The ZEEE
Real-Time Systems Symposium, IEEE Computer Society
Press, pp. 72-81, December 1998.
Welch, L. and Shirazi, B., “A Dynamic Real-Time
Benchmark for Assessment of QoS and Resource
Management Technology,” The IEEE Real-Time
Technology and Applications Symposium, pp. 36-45,
June 1999.
Welch, L., Pfarr, B. and Tjaden, B., “Adaptive Resource
Management Technology for Satellite Constellations,”
The Second Earth Science Technology Conference
(ESTC-2002), Pasadena, CA, June 2002.
Welch, L., et al., “Adaptive Resource Management for
On-board Image Processing Systems,” Journal. of
Parallel & Distributed Computing Practices- Special
Issue on parallel & distributed real-time systems, Nova
Science Publishers (to appear).
von Neumann, J., and Morgenstem, O., “Theory of
Games and Economic Behaviow“, Princeton University
Press, 1947
Howard, R, and Matheson, J. eds., “The Principles and
Applications of Decision Analysis’’, Strategic Decision
Group, 1984
Raiflk, H., and Kennez, R, “Decisions with Multiple
Objectives: Prefirences and Value TradeoQ-s”, Wiley,
New Zork, 1976
Otto, K., Antonsson, E., “The Method of Imprecision
Compared to Utility Theory for Design Selection
Problems”, In Design Theory and Methodology

Ecker, K., Juedes, D., Welche, L., Chelberg, D.,
Bruggeman, C., Drews, F., Fleeman, D., Parrot, D., and
Pfarr, B., “An Optimization Framework for Dynamic,

(DTM93) ASME, pp. 167-173,1993

Distributed Real-Time Systems”, In Proceedings of the
11” International Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS2003), to appear, 2003
Drews, F., Fleeman, D., Ecker, K-, Welch, L, “A General
Optimization Framework and a System Architecture for
Adative Resource Management”, Technical Report,
Department of Computer Science, Ohio University, to
appear, 2003.
Blazewicz, J., Ecker, K., Schmidt, G., and Weglw
J.,Tchedulig in Computer and Manufacturing Sys t ed ,
Springer, 2001
NASA SWIFT homepage, http://swift.gsfc.nagov

